The Descent of Man Page 12
If we look back to an extremely remote epoch, before man had arrived at the dignity of manhood, he would have been guided more by instinct and less by reason than are savages at the present time. Our early semi-human progenitors would not have practised infanticide, for the instincts of the lower animals are never so perverted as to lead them regularly to destroy their own 135offspring. There would have been no prudential restraint from marriage, and the sexes would have freely united at an early age. Hence the progenitors of man would have tended to increase rapidly, but checks of some kind, either periodical or constant, must have kept down their numbers, even more severely than with existing savages. What the precise nature of these checks may have been, we cannot say, any more than with most other animals. We know that horses and cattle, which are not highly prolific animals, when first turned loose in South America, increased at an enormous rate. The slowest breeder of all known animals, namely the elephant, would in a few thousand years stock the whole world. The increase of every species of monkey must be checked by some means; but not, as Brehm remarks, by the attacks of beasts of prey. No one will assume that the actual power of reproduction in the wild horses and cattle of America, was at first in any sensible degree increased; or that, as each district became fully stocked, this same power was diminished. No doubt in this case and in all others, many checks concur, and different checks under different circumstances; periodical dearths, depending on unfavourable seasons, being probably the most important of all. So it will have been with the early progenitors of man.
Natural Selection.—We have now seen that man is variable in body and mind; and that the variations are induced, either directly or indirectly, by the same general causes, and obey the same general laws, as with the lower animals. Man has spread widely over the face of the earth, and must have been exposed, during his incessant migrations,195 to the most diversified con136ditions. The inhabitants of Tierra del Fuego, the Cape of Good Hope, and Tasmania in the one hemisphere, and of the Arctic regions in the other, must have passed through many climates and changed their habits many times, before they reached their present homes.196 The early progenitors of man must also have tended, like all other animals, to have increased beyond their means of subsistence; they must therefore occasionally have been exposed to a struggle for existence, and consequently to the rigid law of natural selection. Beneficial variations of all kinds will thus, either occasionally or habitually, have been preserved, and injurious ones eliminated. I do not refer to strongly-marked deviations of structure, which occur only at long intervals of time, but to mere individual differences. We know, for instance, that the muscles of our hands and feet, which determine our powers of movement, are liable, like those of the lower animals,197 to incessant variability. If then the ape-like progenitors of man which inhabited any district, especially one undergoing some change in its conditions, were divided into two equal bodies, the one half which included all the individuals best adapted by their powers of movement for gaining subsistence or for defending themselves, would on an average survive in greater number and procreate more offspring than the other and less well endowed half.
Man in the rudest state in which he now exists is the most dominant animal that has ever appeared on the earth. He has spread more widely than any 137other highly organised form; and all others have yielded before him. He manifestly owes this immense superiority to his intellectual faculties, his social habits, which lead him to aid and defend his fellows, and to his corporeal structure. The supreme importance of these characters has been proved by the final arbitrament of the battle for life. Through his powers of intellect, articulate language has been evolved; and on this his wonderful advancement has mainly depended. He has invented and is able to use various weapons, tools, traps, &c., with which he defends himself, kills or catches prey, and otherwise obtains food. He has made rafts or canoes on which to fish or cross over to neighbouring fertile islands. He has discovered the art of making fire, by which hard and stringy roots can be rendered digestible, and poisonous roots or herbs innocuous. This last discovery, probably the greatest, excepting language, ever made by man, dates from before the dawn of history. These several inventions, by which man in the rudest state has become so preeminent, are the direct result of the development of his powers of observation, memory, curiosity, imagination, and reason. I cannot, therefore, understand how it is that Mr. Wallace198 maintains, that “natural selection could only have endowed the savage with a brain a little superior to that of an ape.”
138
Although the intellectual powers and social habits of man are of paramount importance to him, we must not underrate the importance of his bodily structure, to which subject the remainder of this chapter will be devoted. The development of the intellectual and social or moral faculties will be discussed in the following chapter.
Even to hammer with precision is no easy matter, as every one who has tried to learn carpentry will admit. To throw a stone with as true an aim as can a Fuegian in defending himself, or in killing birds, requires the most consummate perfection in the correlated action of the muscles of the hand, arm, and shoulder, not to mention a fine sense of touch. In throwing a stone or spear, and in many other actions, a man must stand firmly on his feet; and this again demands the perfect coadaptation of numerous muscles. To chip a flint into the rudest tool, or to form a barbed spear or hook from a bone, demands the use of a perfect hand; for, as a most capable judge, Mr. Schoolcraft,199 remarks, the shaping fragments of stone into knives, lances, or arrow-heads, shews “extraordinary ability and long practice.” We have evidence of this in primeval men having practised a division of labour; each man did not manufacture his own flint tools or rude pottery; but certain individuals appear to have devoted themselves to such work, no doubt receiving in exchange the produce of the chase. Archæologists are convinced that an enormous interval of time 139elapsed before our ancestors thought of grinding chipped flints into smooth tools. A man-like animal who possessed a hand and arm sufficiently perfect to throw a stone with precision or to form a flint into a rude tool, could, it can hardly be doubted, with sufficient practice make almost anything, as far as mechanical skill alone is concerned, which a civilised man can make. The structure of the hand in this respect may be compared with that of the vocal organs, which in the apes are used for uttering various signal-cries, or, as in one species, musical cadences; but in man closely similar vocal organs have become adapted through the inherited effects of use for the utterance of articulate language.
Turning now to the nearest allies of man, and therefore to the best representatives of our early progenitors, we find that the hands in the Quadrumana are constructed on the same general pattern as in us, but are far less perfectly adapted for diversified uses. Their hands do not serve so well as the feet of a dog for locomotion; as may be seen in those monkeys which walk on the outer margins of the palms, or on the backs of their bent fingers, as in the chimpanzee and orang.200 Their hands, however, are admirably adapted for climbing trees. Monkeys seize thin branches or ropes, with the thumb on one side and the fingers and palm on the other side, in the same manner as we do. They can thus also carry rather large objects, such as the neck of a bottle, to their mouths. Baboons turn over stones and scratch up roots with their hands. They seize nuts, insects, or other small objects with the thumb in opposition to the fingers, and no doubt they thus extract eggs and the young from the nests of birds. American monkeys beat the wild oranges on the 140branches until the rind is cracked, and then tear it off with the fingers of the two hands. Other monkeys open mussel-shells with the two thumbs. With their fingers they pull out thorns and burrs, and hunt for each other’s parasites. In a state of nature they break open hard fruits with the aid of stones. They roll down stones or throw them at their enemies; nevertheless, they perform these various actions clumsily, and they are quite unable, as I have myself seen, to throw a stone with precision.
It seems to me far from true that because “objects are grasped clums
ily” by monkeys, “a much less specialised organ of prehension” would have served them201 as well as their present hands. On the contrary, I see no reason to doubt that a more perfectly constructed hand would have been an advantage to them, provided, and it is important to note this, that their hands had not thus been rendered less well adapted for climbing trees. We may suspect that a perfect hand would have been disadvantageous for climbing; as the most arboreal monkeys in the world, namely Ateles in America and Hylobates in Asia, either have their thumbs much reduced in size and even rudimentary, or their fingers partially coherent, so that their hands are converted into mere grasping-hooks.202
As soon as some ancient member in the great series of the Primates came, owing to a change in its manner of procuring subsistence, or to a change in the conditions of its native country, to live somewhat less on trees and more on the ground, its manner of progression would have been modified; and in this case it 141would have had to become either more strictly quadrupedal or bipedal. Baboons frequent hilly and rocky districts, and only from necessity climb up high trees;203 and they have acquired almost the gait of a dog. Man alone has become a biped; and we can, I think, partly see how he has come to assume his erect attitude, which forms one of the most conspicuous differences between him and his nearest allies. Man could not have attained his present dominant position in the world without the use of his hands which are so admirably adapted to act in obedience to his will. As Sir C. Bell204 insists “the hand supplies all instruments, and by its correspondence with the intellect gives him universal dominion.” But the hands and arms could hardly have become perfect enough to have manufactured weapons, or to have hurled stones and spears with a true aim, as long as they were habitually used for locomotion and for supporting the whole weight of the body, or as long as they were especially well adapted, as previously remarked, for climbing trees. Such rough treatment would also have blunted the sense of touch, on which their delicate use largely depends. From these causes alone it would have been an advantage to man to have become a biped; but for many actions it is almost necessary that both arms and the whole upper part of the body should be free; and he must for this end stand firmly on his feet. To gain this great advantage, the feet have been rendered flat, and the great toe peculiarly modified, though this has entailed the loss of the power of prehension. It accords with the principle of the division of physiological labour, which prevails throughout the animal kingdom, that 142as the hands became perfected for prehension, the feet should have become perfected for support and locomotion. With some savages, however, the foot has not altogether lost its prehensile power, as shewn by their manner of climbing trees and of using them in other ways.205
If it be an advantage to man to have his hands and arms free and to stand firmly on his feet, of which there can be no doubt from his preeminent success in the battle of life, then I can see no reason why it should not have been advantageous to the progenitors of man to have become more and more erect or bipedal. They would thus have been better able to have defended themselves with stones or clubs, or to have attacked their prey, or otherwise obtained food. The best constructed individuals would in the long run have succeeded best, and have survived in larger numbers. If the gorilla and a few allied forms had become extinct, it might have been argued with great force and apparent truth, that an animal could not have been gradually converted from a quadruped into a biped; as all the individuals in an intermediate condition would have been miserably ill-fitted for progression. But we know (and this is well worthy of reflection) that several kinds of apes are now actually in this intermediate condition; and no one doubts that they are on the whole well adapted for their conditions of life. Thus the gorilla runs with a sidelong shambling gait, but more commonly 143progresses by resting on its bent hands. The long-armed apes occasionally use their arms like crutches, swinging their bodies forward between them, and some kinds of Hylobates, without having been taught, can walk or run upright with tolerable quickness; yet they move awkwardly, and much less securely than man. We see, in short, with existing monkeys various gradations between a form of progression strictly like that of a quadruped and that of a biped or man.
As the progenitors of man became more and more erect, with their hands and arms more and more modified for prehension and other purposes, with their feet and legs at the same time modified for firm support and progression, endless other changes of structure would have been necessary. The pelvis would have had to be made broader, the spine peculiarly curved and the head fixed in an altered position, and all these changes have been attained by man. Prof. Schaaffhausen206 maintains that “the powerful mastoid processes of the human skull are the result of his erect position;” and these processes are absent in the orang, chimpanzee, &c., and are smaller in the gorilla than in man. Various other structures might here have been specified, which appear connected with man’s erect position. It is very difficult to decide how far all these correlated modifications are the result of natural selection, and how far of the inherited effects of the increased use of certain parts, or of the action of one part on another. No doubt these means of change act and react on each other: thus when certain muscles, and the crests of bone to which they are attached, become enlarged by 144habitual use, this shews that certain fictions are habitually performed and must be serviceable. Hence the individuals which performed them best, would tend to survive in greater numbers.
The free use of the arms and hands, partly the cause and partly the result of man’s erect position, appears to have led in an indirect manner to other modifications of structure. The early male progenitors of man were, as previously stated, probably furnished with great canine teeth; but as they gradually acquired the habit of using stones, clubs, or other weapons, for fighting with their enemies, they would have used their jaws and teeth less and less. In this case, the jaws, together with the teeth, would have become reduced in size, as we may feel sure from innumerable analogous cases. In a future chapter we shall meet with a closely-parallel case, in the reduction or complete disappearance of the canine teeth in male ruminants, apparently in relation with the development of their horns; and in horses, in relation with their habit of fighting with their incisor teeth and hoofs.
In the adult male anthropomorphous apes, as Rütimeyer,207 and others have insisted, it is precisely the effect which the jaw-muscles by their great development have produced on the skull, that causes it to differ so greatly in many respects from that of man, and has given to it “a truly frightful physiognomy.” Therefore as the jaws and teeth in the progenitors of man gradually become reduced in size, the adult skull would have presented nearly the same characters which it offers in the young of the anthropomorphous apes, and would thus have come to resemble more nearly that of existing 145man. A great reduction of the canine teeth in the males would almost certainly, as we shall hereafter see, have affected through inheritance the teeth of the females.
As the various mental faculties were gradually developed, the brain would almost certainly have become larger. No one, I presume, doubts that the large size of the brain in man, relatively to his body, in comparison with that of the gorilla or orang, is closely connected with his higher mental powers. We meet with closely analogous facts with insects, in which the cerebral ganglia are of extraordinary dimensions in ants; these ganglia in all the Hymenoptera being many times larger than in the less intelligent orders, such as beetles.208 On the other hand, no one supposes that the intellect of any two animals or of any two men can be accurately gauged by the cubic contents of their skulls. It is certain that there may be extraordinary mental activity with an extremely small absolute mass of nervous matter: thus the wonderfully diversified instincts, mental powers, and affections of ants are generally known, yet their cerebral ganglia are not so large as the quarter of a small pin’s head. Under this latter point of view, the brain of an ant is one of the most marvellous atoms of matter in the world, perhaps more marvellous than the brain of man.
The belief that
there exists in man some close relation between the size of the brain and the development of the intellectual faculties is supported by the comparison of the skulls of savage and civilised races, of ancient and modern people, and by the analogy of the whole verte146brate series. Dr. J. Barnard Davis has proved209 by many careful measurements, that the mean internal capacity of the skull in Europeans is 92·3 cubic inches; in Americans 87·5; in Asiatics 87·1; and in Australians only 81·9 inches. Professor Broca210 found that skulls from graves in Paris of the nineteenth century, were larger than those from vaults of the twelfth century, in the proportion of 1484 to 1426; and Prichard is persuaded that the present inhabitants of Britain have “much more capacious brain-cases” than the ancient inhabitants. Nevertheless it must be admitted that some skulls of very high antiquity, such as the famous one of Neanderthal, are well developed and capacious. With respect to the lower animals, M. E. Lartet,211 by comparing the crania of tertiary and recent mammals, belonging to the same groups, has come to the remarkable conclusion that the brain is generally larger and the convolutions more complex in the more recent form. On the other hand I have shewn212 that the brains of domestic rabbits are considerably reduced in bulk, in comparison with those of the wild rabbit or hare; and this may be attributed to their having been closely confined during many generations, so that they have exerted but little their intellect, instincts, senses, and voluntary movements.
The gradually increasing weight of the brain and skull in man must have influenced the development of the supporting spinal column, more especially whilst he was becoming erect. As this change of position was 147being brought about, the internal pressure of the brain, will, also, have influenced the form of the skull; for many facts shew how easily the skull is thus affected. Ethnologists believe that it is modified by the kind of cradle in which infants sleep. Habitual spasms of the muscles and a cicatrix from a severe burn have permanently modified the facial bones. In young persons whose heads from disease have become fixed either sideways or backwards, one of the eyes has changed its position, and the bones of the skull have been modified; and this apparently results from the brain pressing in a new direction.213 I have shewn that with long-eared rabbits, even so trifling a cause as the lopping forward of one ear drags forward on that side almost every bone of the skull; so that the bones on the opposite sides no longer strictly correspond. Lastly, if any animal were to increase or diminish much in general size, without any change in its mental powers; or if the mental powers were to be much increased or diminished without any great change in the size of the body; the shape of the skull would almost certainly be altered. I infer this from my observations on domestic rabbits, some kinds of which have become very much larger than the wild animal, whilst others have retained nearly the same size, but in both cases the brain has been much reduced relatively to the size of the body. Now I was at first much surprised by finding that in all these rabbits the skull had become elongated or dolicho148cephalic; for instance, of two skulls of nearly equal breadth, the one from a wild rabbit and the other from a large domestic kind, the former was only 3·15 and the latter 4·3 inches in length.214 One of the most marked distinctions in different races of man is that the skull in some is elongated, and in others rounded; and here the explanation suggested by the case of the rabbits may partially hold good; for Welcker finds that short “men incline more to brachycephaly, and tall men to dolichocephaly;”215 and tall men may be compared with the larger and longer-bodied rabbits, all of which have elongated skulls, or are dolichocephalic.