The Descent of Man Page 23
It deserves notice that the instinct of pairing with a single female is easily lost under domestication. The wild-duck is strictly monogamous, the domestic-duck highly polygamous. The Rev. W. D. Fox informs me that with some half-tamed wild-ducks, kept on a large pond in his neighbourhood, so many mallards were shot by the gamekeeper that only one was left for every seven or eight females; yet unusually large broods were reared. The guinea-fowl is strictly monogamous; but Mr. Fox finds that his birds succeed best when he keeps one cock to two or three hens.344 Canary-birds pair in a state of nature, but the breeders in England successfully put one male to four or five females; nevertheless the first female, as Mr. Fox has been assured, is alone treated as the wife, she and her young ones being fed by him; the others are treated as concubines. I have noticed these cases, as it renders it in some degree probable that monogamous species, in a state of nature, might readily become either temporarily or permanently polygamous.
271
With respect to reptiles and fishes, too little is known of their habits to enable us to speak of their marriage arrangements. The stickle-back Gasterosteus, however, is said to be a polygamist;345 and the male during the breeding-season differs conspicuously from the female.
To sum up on the means through which, as far as we can judge, sexual selection has led to the development of secondary sexual characters. It has been shewn that the largest number of vigorous offspring will be reared from the pairing of the strongest and best-armed males, which have conquered other males, with the most vigorous and best-nourished females, which are the first to breed in the spring. Such females, if they select the more attractive, and at the same time vigorous, males, will rear a larger number of offspring than the retarded females, which must pair with the less vigorous and less attractive males. So it will be if the more vigorous males select the more attractive and at the same time healthy and vigorous females; and this will especially hold good if the male defends the female, and aids in providing food for the young. The advantage thus gained by the more vigorous pairs in rearing a larger number of offspring has apparently sufficed to render sexual selection efficient. But a large preponderance in number of the males over the females would be still more efficient; whether the preponderance was only occasional and local, or permanent; whether it occurred at birth, or subsequently from the greater destruction of the females; or whether it indirectly followed from the practice of polygamy.
The Male generally more modified than the Female.—Throughout the animal kingdom, when the sexes differ 272from each other in external appearance, it is the male which, with rare exceptions, has been chiefly modified; for the female still remains more like the young of her own species, and more like the other members of the same group. The cause of this seems to lie in the males of almost all animals having stronger passions than the females. Hence it is the males that fight together and sedulously display their charms before the females; and those which are victorious transmit their superiority to their male offspring. Why the males do not transmit their characters to both sexes will hereafter be considered. That the males of all mammals eagerly pursue the females is notorious to every one. So it is with birds; but many male birds do not so much pursue the female, as display their plumage, perform strange antics, and pour forth their song, in her presence. With the few fish which have been observed, the male seems much more eager than the female; and so it is with alligators, and apparently with Batrachians. Throughout the enormous class of insects, as Kirby remarks,346 “the law is, that the male shall seek the female.” With spiders and crustaceans, as I hear from two great authorities, Mr. Blackwall and Mr. C. Spence Bate, the males are more active and more erratic in their habits than the females. With insects and crustaceans, when the organs of sense or locomotion are present in the one sex and absent in the other, or when, as is frequently the case, they are more highly developed in the one than the other, it is almost invariably the male, as far as I can discover, which retains such organs, or has them most developed; and this shews that the male is the more active member in the courtship of the sexes.347
273
The female, on the other hand, with the rarest exception, is less eager than the male. As the illustrious Hunter348 long ago observed, she generally “requires to be courted;” she is coy, and may often be seen endeavouring for a long time to escape from the male. Every one who has attended to the habits of animals will be able to call to mind instances of this kind. Judging from various facts, hereafter to be given, and from the results which may fairly be attributed to sexual selection, the female, though comparatively passive, generally exerts some choice and accepts one male in preference to others. Or she may accept, as appearances would sometimes lead us to believe, not the male which is the most attractive to her, but the one which is the least distasteful. The exertion of some choice on the part of the female seems almost as general a law as the eagerness of the male.
We are naturally led to enquire why the male in so many and such widely distinct classes has been rendered more eager than the female, so that he searches for her and plays the more active part in courtship. It would be no advantage and some loss of power if both sexes were mutually to search for each other; but why should the male almost always be the seeker? With plants, the ovules after fertilisation have to be nourished for a time; hence the pollen is necessarily brought to the female organs—being placed on the stigma, through the agency of insects or of the wind, 274or by the spontaneous movements of the stamens; and with the Algæ, &c., by the locomotive power of the antherozooids. With lowly-organised animals permanently affixed to the same spot and having their sexes separate, the male element is invariably brought to the female; and we can see the reason; for the ova, even if detached before being fertilised and not requiring subsequent nourishment or protection, would be, from their larger relative size, less easily transported than the male element. Hence plants349 and many of the lower animals are, in this respect, analogous. In the case of animals not affixed to the same spot, but enclosed within a shell with no power of protruding any part of their bodies, and in the case of animals having little power of locomotion, the males must trust the fertilising element to the risk of at least a short transit through the waters of the sea. It would, therefore, be a great advantage to such animals, as their organisation became perfected, if the males when ready to emit the fertilising element, were to acquire the habit of approaching the female as closely as possible. The males of various lowly-organised animals having thus aboriginally acquired the habit of approaching and seeking the females, the same habit would naturally be transmitted to their more highly developed male descendants; and in order that they should become efficient seekers, they would have to be endowed with strong passions. The acquirement of such passions would naturally follow from the more eager males leaving a larger number of offspring than the less eager.
The great eagerness of the male has thus indirectly 275led to the much more frequent development of secondary sexual characters in the male than in the female. But the development of such characters will have been much aided, if the conclusion at which I arrived after studying domesticated animals, can be trusted, namely, that the male is more liable to vary than the female. I am aware how difficult it is to verify a conclusion of this kind. Some slight evidence, however, can be gained by comparing the two sexes in mankind, as man has been more carefully observed than any other animal. During the Novara Expedition350 a vast number of measurements of various parts of the body in different races were made, and the men were found in almost every case to present a greater range of variation than the women; but I shall have to recur to this subject in a future chapter. Mr. J. Wood,351 who has carefully attended to the variation of the muscles in man, puts in italics the conclusion that “the greatest number of abnormalities in each subject is found in the males.” He had previously remarked that “altogether in 102 subjects the varieties of redundancy were found to be half as many again as in females, contrasting widely with the greater frequen
cy of deficiency in females before described.” Professor Macalister like wise remarks352 that variations in the muscles “are probably more common in males than females.” Certain muscles which are not normally present in mankind are also more frequently developed in the male than in the female sex, although exceptions to this rule 276are said to occur. Dr. Burt Wilder353 has tabulated the cases of 152 individuals with supernumerary digits, of which 86 were males, and 39, or less than half, females; the remaining 27 being of unknown sex. It should not, however, be overlooked that women would more frequently endeavour to conceal a deformity of this kind than men. Whether the large proportional number of deaths of the male offspring of man and apparently of sheep, compared with the female offspring, before, during, and shortly after birth (see supplement), has any relation to a stronger tendency in the organs of the male to vary and thus to become abnormal in structure or function, I will not pretend to conjecture.
In various classes of animals a few exceptional cases occur, in which the female instead of the male has acquired well pronounced secondary sexual characters, such as brighter colours, greater size, strength, or pugnacity. With birds, as we shall hereafter see, there has sometimes been a complete transposition of the ordinary characters proper to each sex; the females having become the more eager in courtship, the males remaining comparatively passive, but apparently selecting, as we may infer from the results, the more attractive females. Certain female birds have thus been rendered more highly coloured or otherwise ornamented, as well as more powerful and pugnacious than the males, these characters being transmitted to the female offspring alone.
It may be suggested that in some cases a double process of selection has been carried on; the males having selected the more attractive females, and the latter the more attractive males. This process however, though it might lead to the modification of both sexes, 277would not make the one sex different from the other, unless indeed their taste for the beautiful differed; but this is a supposition too improbable in the case of any animal, excepting man, to be worth considering. There are, however, many animals, in which the sexes resemble each other, both being furnished with the same ornaments, which analogy would lead us to attribute to the agency of sexual selection. In such cases it may be suggested with more plausibility, that there has been a double or mutual process of sexual selection; the more vigorous and precocious females having selected the more attractive and vigorous males, the latter having rejected all except the more attractive females. But from what we know of the habits of animals, this view is hardly probable, the male being generally eager to pair with any female. It is more probable that the ornaments common to both sexes were acquired by one sex, generally the male, and then transmitted to the offspring of both sexes. If, indeed, during a lengthened period the males of any species were greatly to exceed the females in number, and then during another lengthened period under different conditions the reverse were to occur, a double, but not simultaneous, process of sexual selection might easily be carried on, by which the two sexes might be rendered widely different.
We shall hereafter see that many animals exist, of which neither sex is brilliantly coloured or provided with special ornaments, and yet the members of both sexes or of one alone have probably been modified through sexual selection. The absence of bright tints or other ornaments may be the result of variations of the right kind never having occurred, or of the animals themselves preferring simple colours, such as plain black or white. Obscure colours have often been acquired through natural selection for the sake of protection, and278 the acquirement through sexual selection of conspicuous colours, may have been checked from the danger thus incurred. But in other cases the males have probably struggled together during long ages, through brute force, or by the display of their charms, or by both means combined, and yet no effect will have been produced unless a larger number of offspring were left by the more successful males to inherit their superiority, than by the less successful males; and this, as previously shewn, depends on various complex contingencies.
Sexual selection acts in a less rigorous manner than natural selection. The latter produces its effects by the life or death at all ages of the more or less successful individuals. Death, indeed, not rarely ensues from the conflicts of rival males. But generally the less successful male merely fails to obtain a female, or obtains later in the season a retarded and less vigorous female, or, if polygamous, obtains fewer females; so that they leave fewer, or less vigorous, or no offspring. In regard to structures acquired through ordinary or natural selection, there is in most cases, as long as the conditions of life remain the same, a limit to the amount of advantageous modification in relation to certain special ends; but in regard to structures adapted to make one male victorious over another, either in fighting or in charming the female, there is no definite limit to the amount of advantageous modification; so that as long as the proper variations arise the work of sexual selection will go on. This circumstance may partly account for the frequent and extraordinary amount of variability presented by secondary sexual characters. Nevertheless, natural selection will determine that characters of this kind shall not be acquired by the victorious males, which would be injurious to them in any high degree, either by expending too much of their vital powers, or279 by exposing them to any great danger. The development, however, of certain structures—of the horns, for instance, in certain stags—has been carried to a wonderful extreme; and in some instances to an extreme which, as far as the general conditions of life are concerned, must be slightly injurious to the male. From this fact we learn that the advantages which favoured males have derived from conquering other males in battle or courtship, and thus leaving a numerous progeny, have been in the long run greater than those derived from rather more perfect adaptation to the external conditions of life. We shall further see, and this could never have been anticipated, that the power to charm the female has been in some few instances more important than the power to conquer other males in battle.
LAWS OF INHERITANCE.
In order to understand how sexual selection has acted, and in the course of ages has produced conspicuous results with many animals of many classes, it is necessary to bear in mind the laws of inheritance, as far as they are known. Two distinct elements are included under the term “inheritance,” namely the transmission and the development of characters; but as these generally go together, the distinction is often overlooked. We see this distinction in those characters which are transmitted through the early years of life, but are developed only at maturity or during old age. We see the same distinction more clearly with secondary sexual characters, for these are transmitted through both sexes, though developed in one alone. That they are present in both sexes, is manifest when two species, having strongly-marked sexual characters, are crossed, for each transmits the characters proper to280 its own male and female sex to the hybrid offspring of both sexes. The same fact is likewise manifest, when characters proper to the male are occasionally developed in the female when she grows old or becomes diseased; and so conversely with the male. Again, characters occasionally appear, as if transferred from the male to the female, as when, in certain breeds of the fowl, spurs regularly appear in the young and healthy females; but in truth they are simply developed in the female; for in every breed each detail in the structure of the spur is transmitted through the female to her male offspring. In all cases of reversion, characters are transmitted through two, three, or many generations, and are then under certain unknown favourable conditions developed. This important distinction between transmission and development will be easiest kept in mind by the aid of the hypothesis of pangenesis, whether or not it be accepted as true. According to this hypothesis, every unit or cell of the body throws off gemmules or undeveloped atoms, which are transmitted to the offspring of both sexes, and are multiplied by self-division. They may remain undeveloped during the early years of life or during successive generations; their development into units or cells, like those from whic
h they were derived, depending on their affinity for, and union with, other units or cells previously developed in the due order of growth.
Inheritance at Corresponding Periods of Life.—This tendency is well established. If a new character appears in an animal whilst young, whether it endures throughout life or lasts only for a time, it will reappear, as a general rule, at the same age and in the same manner in the offspring. If, on the other hand, a new character appears at maturity, or even during old age, it tends281 to reappear in the offspring at the same advanced age. When deviations from this rule occur, the transmitted characters much oftener appear before than after the corresponding age. As I have discussed this subject at sufficient length in another work,354 I will here merely give two or three instances, for the sake of recalling the subject to the reader’s mind. In several breeds of the Fowl, the chickens whilst covered with down, in their first true plumage, and in their adult plumage, differ greatly from each other, as well as from their common parent-form, the Gallus bankiva; and these characters are faithfully transmitted by each breed to their offspring at the corresponding period of life. For instance, the chickens of spangled Hamburghs, whilst covered with down, have a few dark spots on the head and rump, but are not longitudinally striped, as in many other breeds; in their first true plumage, “they are beautifully pencilled,” that is each feather is transversely marked by numerous dark bars; but in their second plumage the feathers all become spangled or tipped with a dark round spot.355 Hence in this breed variations have occurred and have been transmitted at three distinct periods of life. The Pigeon offers a more remarkable case, because the aboriginal parent-species does not undergo with advancing age any change of plumage, excepting that at maturity the breast becomes more iridescent; yet there are breeds which do not acquire their characteristic colours until they 282have moulted two, three, or four times; and these modifications of plumage are regularly transmitted.